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Abstract 
This paper presents a new method suitable for shape 
classification, inspired by the early processing levels of 
the human visual system. It extracts a description for any 
simple 2-dimensional shape having a closed contour, 
regardless of its size, rotation and position, in affordable 
computational cost. The paper introduces a new approach 
to the modeling of the hypercolumns of the primary 
visual cortex, which requires significantly less 
computational burden and that is highly parallel. A new 
shape descriptor based on the relative angles of an object 
is also proposed. It produces close results for different 
shapes of the same object, it is proportion-flexible and it 
can identify distorted shapes correctly. Experimental 
results prove that the method is adequate for industrial 
production applications based on shape classification, as 
well as for shape-based image retrieval.  
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1.  Introduction 

The Human Visual System (HVS) and generally the 
biological visual systems are far superior to artificial. 
They can discriminate among thousands of different 
shapes, colors, moves and textures in a variety of lighting 
conditions, ranging from extremely poor to ideal. More 
important, they provide already solutions to many 
partially, or totally unresolved problems that today’s 
computer-vision science faces. For that reason it has been 
the centre of focus for many researchers, especially into 
the past decade.  

Research in the field has been focused in two different 
directions. Firstly, there are models based on 
neuroscientific data that attempt to interpret the way that 
the HVS operates either in total or partially. These models 
are complicated simulations that intentionally reduce input 
space either by using low resolution images or by reducing 
the complexity of the input data [1-4]. Such models, 

although they give important clues about the HVS, they 
cannot be used in practical applications, and are more 
neuroscience-oriented. Typical models of this category are 
the Max model [5], which attempts to present an 
interpretation to the way that the HVS deals with the 
“binding problem” of the shapes. The CINNIC [2, 3] and 
RF-SLISSOM [6] attempt to present a solution to the 
integration of salient contours in the Primary Visual 
Cortex of the HVS.  

On the other hand, other models exist that, though they are 
inspired by some attributes of the HVS, they concentrate 
adequately to performance as well as to neuroscientific 
aspect and, thus, they can be utilized into many computer 
vision applications. Such models are Fukushima’s 
Neocogntitron [7], which deals with the shape binding 
problem and has already been used successfully in OCR 
techniques [8], and the SEEMORE [9], that focuses to 
object perception and was employed in image retrieval 
applications. Additionally, the various Retinex 
implementations [10, 11] can be placed into this kind of 
models. The Retinex is inspired by the way the HVS 
produces lightness records and color perception and was 
successfully used for image enhancement and restoration. 
Last, the Boundary Contour System (BCS) and Feature 
Contour System (FCS) that deal with shape perception, 
has been used in radar applications [12] and was 
implemented in analogue VLSI [13].  

This paper proposes a new system for shape classification, 
belonging to the second category. Consequently, creating 
an accurate neuroscientific model of the HVS is out of our 
scope. However, the proposed model adopts many 
attractive characteristics of the visual pathways especially 
between the retina and the Primary Visual Cortex and 
suggests a solution for shape representation and the shape 
retrieval problem. Although many of the aforementioned 
models employ the same characteristics, they tend to 
achieve compatibility with the HVS rather than 
performance. The primary objective of the proposed 
model on the other hand is performance. A new simple 
approach for the usage of a new simple set of oriented 
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filters in the hypercolumns is presented. This is full 
parallel and it avoids complex convolutions with 2-
dimensional oriented Gaussians or Gabor filters, though it 
exhibits the same good results. This makes the model in 
hand capable of handling images with resolution up to 
1000×1000 pixels in real-time, when executed by a 
contemporary personal computer. Such a performance has 
not yet been reported by any of the aforementioned 
models, notwithstanding that in majority they process 
retinal images usually up to 200×200 pixels. Moreover, a 
shape description is employed, that relies on the angles 
created between the stimulated hypercolumns along the 
contour. This descriptor is shown to be both scale and 
rotation invariant, as well as immune to contour 
fluctuations. Furthermore, it is exhibited that it can be 
easily adjusted to a simple classifier, such as a 
conventional feed-forward neural network, for a successful 
classification of shapes. The paper is organized as follows: 
Section 2 provides a thorough description of the stages of 
the proposed method; section 3 presents experimental 
results and comparisons with existing methods; finally in 
section 4, conclusions, possible applications and 
improvements of the method are discussed. 

Figure 1: Overview of the 4 layers of the proposed 
method. 

 

2. Description of the method 
The proposed system consists of four processing levels. 
The first one, being the circular shaped inhibition layer, 
approximates the effects of ganglion and Lateral 
Geniculate Nucleus’ (LGN) cells to the input retinal 
image. The second one is the hypercolumns of the Primary 
Visual Cortex, which processes the output of the previous 
layer, in accordance to the HVS. Next, the shape 
descriptor is applied to the output of the hypercolumns, 
producing a shape signature for a given contour. Last, the 
shape signature is fed to a neural network, which is the last 
level and classifies the shape to one of the output classes 
created during a training period. Figure 1 illustrates an 
overview of the method, with a clear distinction of the 4 
processing layers. It is worth noting that layers 1 and 2 
have a retinotopical organization, whereas layers 3 and 4 
do not. 

 
2.1 First Layer: Circular Inhibition 

 
Circular inhibition in the HVS takes place in the ganglion 
and LGN cells. These cells have circular receptive fields 
with centre-surround opponency, meaning that they are 
either inhibited by their surround and excited by their 
centre, or excited by their surround and inhibited by their 
centers [14-16]. This kind of receptive fields is sensitive 
only to differences in intensity, which results to the 
extraction of edges in the retinal image.  

Ganglion and LGN receptive fields are usually modeled as 
2-dimensional Gaussians (see Figure 2a) over a large 
number of pixels, in order to create the circular receptive 
field and maintain the different grades of the Gaussian 
curve. In our method, we included the centre-surround 
opponency, avoiding however the use a 2-dimensional 
Gaussian. We particularly used a rough approximation of 
the Gaussian, as presented in Figure 2b, which can be 
implemented by a 3×3 pixel neighborhood. 

In this approach, the central pixel represents the positive 
centre and the 8 surrounding pixels the negative surround. 
For simplicity we did not include cells with inhibitory 
centre and excitatory surround. The above approximation 
reduces significantly the computational burden of this 
layer. The output of this layer is the convolution of the 
input image with the following mask:  

Taking into account that the input is a grey-scale image, 
the output of every cell of the layer will be also a grey-
scale image, with intensity values depending on its local 
contrast. Additionally, every cell of the layer corresponds 
to a single pixel of the input image, thus, maintaining the 
initial resolution of the image. 
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Figure 2: (a) The typical modelling of Ganglion and LGN 
cells and (b) the approximation used in the proposed 
method. 

 
 2.2 Second Layer: Hypercolumns 

 
The next processing level of the HVS takes place in the 
Primary Visual Cortex. LGN cells are combined to form 
simple oriented cells, complex oriented and end-stopped 
or hypercomplex cells [14-16]. All these cells are 
organized in retinotopic columnar formations known as 
hypercolumns. Every hypercolumn processes a very small 
and specific part of the visual field, convolving it with all 
of its cells.  

The simple oriented cells are modeled in the literature as 
2-dimensional Gabor filters having specific orientations, 
which are then convolved with the input image [1-4, 6, 9, 
12, 17]. Usually 12 different orientations are used, 
meaning that there is an oriented cell approximately every 
15° [2, 3]. Convolving an image with 12 different 2-
dimensional oriented Gabor filters, which comprise of a 
sinusoidal multiplied by a Gaussian, is computationally 
expensive and, consequently, many of the models adopting 
this approach avoid to process high resolution images.  

Instead of using 2-dimensional oriented Gabor filters, we 
propose the use of a set of simpler oriented filters that are 
less computational intensive, and have approximately the 
same results. These filters, which will approximate the 
operation of the hypercolumns, are binary kernels with a 
straight oriented segment within their receptive field. 
Contrary to Gabor filters, they comprise only 2 values: a 
positive one, i.e. the oriented segment corresponding to 
the excitatory region and a negative one, i.e. the 
background corresponding to the inhibitory region. There 
are 12 different kernel groups, each one with a certain 
orientation: 0º, 15º, 30º, 45º, 60º, 75º, 90º, 105º, 120º, 
135º, 150º and 165º. For every group, all the possible 
positions of the segment, within its receptive field, are 
included as different instances of the same orientation. 
This is to say that every group of kernels with the same 
orientation operates as a complex cortical cell, since it 
detects lines with a particular orientation, in every position 
of its receptive field. Key-role to the functionality of the 
set of kernels plays the ratio of the dimension of kernels, 
over the width of the excitatory segment. It directly affects 
the number of total kernels in the set, needed to include all 
possible positions of the excitatory segment. The larger 
the number of kernels in the set, the greater is the 
computational burden. After extensive experimental 

search, we concluded that the optimum size of the 
receptive field, that would result to minimum number of 
total kernels and at the same time would maintain 
adequate accuracy, should be 10×10 pixels, while the 
width of the oriented excitatory segment should be 2 
pixels. This values result to a set of 60 kernels, divided 
into 12 different orientation groups. The complete set of 
kernels is presented in Table 1.  

 

 
Table 1: The 60 kernel set utilized in the proposed 

method. Excitatory regions are white, whereas inhibitory 
regions are black. 

 
The main advantage of these kernels is that they are used 
more as tiles than classical convolution kernels. Most 
models use only one kernel in each orientation for a 
particular spatial resolution. This kernel is shifted to all 
possible positions on the image and convolved with each 
one. Our “tilling” approach convolves all the kernels of 
the set with non-overlapping regions. This means that the 
image of the circular inhibition layer is divided into 
10×10-pixel regions, which are non-overlapping and all 
kernels of the set are convolved with every region. This 
approach makes the detection of the orientation of any 
image region feasible, whilst it reduces the number of 
required convolutions significantly.  

For an image of 1000×1000 pixels, the conventional 
convolution of 12 10×10 kernels would result to a total 
number of 12 × (1000)2 = 12,000,000 convolutions 
(assuming zero-padding), whereas the tilling of 60 kernels 
in non-overlapping regions of a 1000×1000-picture, would 
result to 60 × (1000/10)2 = 600,000. This proves that the 
tilling approach requires 20 times less convolution 
operations than the classical approach. Furthermore, there 
are no dependences in the analysis of every image region, 
which makes the tilling approach highly parallel. 

Group 1 0º 
     

Group 2 15º 
     

Group 3 30º 
     

Group 4 45º 
     

Group 5 60º 
     

Group 6 75º 
     

Group 7 90º 
     

Group 8 105º      
Group 9 120º 

     
Group 10 135º 

     
Group 11 150º 

     
Group 12 165º 
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Consequently, our approach is less computationally 
expensive, allowing the processing of higher resolution 
images.  

Every hypercolumn contains all 60 kernels of the set and 
convolves them independently with only one image 
region. The convolution of a kernel with a particular 
image region gives the stimulation of this kernel in this 
exact region of the image. The kernel with the highest 
stimulation in every hypercolumn is the closest to the 
orientation of the region. A hypercolumn produces a valid 
output only if the kernel with the highest stimulation 
differs significantly from the second highest. This rule is 
used in order to ensure that the correct kernel is always 
selected. If the first kernel with the highest stimulation has 
a similar value to the one with the second highest, then the 
hypercolumn produces no output. The results of the tilling 
approach are depicted in Figure 3. Obviously, there are 
some inconsistencies when an edge is located exactly at 
the boundaries of two regions, but as it can be seen, the 
overall result is adequate. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 3: (a) The input image, (b) circular inhibition 
layer and (c) the output of the hypercolumns. 

2.3 Third Layer: Shape descriptor 

The outputs of the hypercolumns are input to the shape 
descriptor. The shape description is a chain of the angles 
formed by the excitatory segments of the kernels, when 
moving along the contour in a clockwise direction. To 
ensure correct angle calculations, only the kernels with a 
very high stimulation are used in the calculations. Its 
novelty is that no proportions are taken into account, but 
only angles. As it is demonstrated in the experimental 
results section, this is an important advantage for shape-
based image retrieval, because it allows different and even 
abstract versions of the same object to be retrieved.  

The angles that are recorded are the ones formed between 
the axes of the current kernel and the next kernel. When 
the formed angle is on the left of the current kernel, 
according to the direction of move, it is negative. Figure 4 
shows the formation of a chain in a simple contour. The 
angles are calculated in terms of steps, which in our case 

are 15°. Consequently, an angle having value ‘-2’ means 
“30° on the left”.  

In order for the description to be independent of the 
starting kernel, normalization is used. Let the description 
of object A be:    

 
 

 

Figure 4: Description of a simple shape. 
 
Then, chain A is scanned in pairs of nearby angles, in 
order to detect the greatest transition as shown by the 
following equation: 
 

(1) 
 

If the greatest transition occurs more than once, the same 
procedure is applied for the second highest transition. 
Once the starting point is redefined, the chain is shifted to 
it giving the final normalized description. It is important to 
mention that the normalized description is already rotation 
invariant, since only the relative angles and not the real 
ones are recorded. For the same reason, it is also scale 
invariant, since only angles and no proportions are 
recorded. 

2.4 Fourth Layer: Classifier 

The normalized shape description is in a form adequate for 
classification. A typical feed-forward neural network was 
used and it was trained in the back-propagation fashion.  
After extensive experimentation we concluded that one 
hidden layer is sufficient for shape retrieval applications, 
giving to the network the adequate generalization ability. 
The activation function of the neurons was selected to be 
the logarithmic sigmoid function, as it gives the better 
results. The number of neurons in the input layer must be 
at least the same with the longest shape description, 
because each angle of the shape description is entered to 
one neuron of the input layer. The output layer must have 
the same number of neurons with the number of possible 
classes. These neurons can have output values ranging in 
the interval [0,1], resulting to a membership function for 
every possible class. 

a

c

b
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3. Experimental results 

A shape retrieval example demonstrating the capabilities 
of the proposed method follows. A neural network of one 
hidden layer with 20 neurons was used.  The network was 
trained in order to identify four classes of different 
patterns. The training set is indicated in Table 2. 

After the training of the neural network, various test 
shapes were assessed, in order to prove the classification 
capabilities of the system. Table 3 presents the output 
results of the neural network. 

 
Table 2: The training sets for the four classes. 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3: Results of classification on 9 test shapes. 

 
It is clear from the results that the method achieves 
rotation and scale invariance, since all test shapes differ in 
size, rotation or position in the image, compared to the 
training set. Of particular interest are the shapes a, b and c. 
They are different instances of the same object, but with a 
dissimilar shape. Many shape descriptors such as chain 
codes [18, 19], or shape numbers [20] would identify these 
shapes as different objects, because of their different 
length proportions. Our method identifies that these 
objects are the same, due to the fact that it is based only in 
relative angles. Particularly shape c, which is a freehand 
drawing with significant distortions in its contour, is 
identified accurately. The robustness of the proposed 
method is also demonstrated with shapes d and e, which 
are two distorted versions of the same training object. 
Shape d is compressed to the 0.65 of the original width 
while e is compressed to the 0.65 of the original length. As 
it can be seen, both shapes are classified correctly. The 
same conclusions are also visible in shapes h and i. Shape 
h is stretched in the x axis, while compressed in the y axis. 
The classification seems not to be affected by warping. 
Shape i, has many non uniform distortions, resulting to a 
total change of the original relative angles, and yet 
classified correctly. Shape g, is an ellipse with higher 
eccentricity than those which were used in the training set 
and it is also successfully classified.  

The proposed method was implemented in C code and 
executed by an Intel Celeron Processor, running at 1 GHz 
with 512MB RAM, under Windows XP. The typical 
execution time for an image of 1000×1000 pixels, is 0.5 
seconds and for images of 700×700 pixels the execution 
time is 0.2 seconds. 

4. Discussion and Conclusions 

The experimental results demonstrate that the proposed 
method is invariant in size and rotation changes. 
Furthermore it is proven that it can tolerate significant 
distortions in the contour of the objects (d, e, g, h), while it 
maintains correct classification ratios. More importantly, it 
is not bound by length proportions and thus can identify 
different instances of the same object, in various 
representations (a, b, c, i).  

Low computational demands of the method, allow the 
manipulation of high resolution images even with an 
average personal computer. Clearly the most 
computationally intensive layer of the method is the 
second one (i.e. the hypercolumns), where convolution 
with multiple kernels occurs. Since this level is highly 
parallel, a parallel execution of this level would minimize 
much more the overall execution time. The low 
computational demands in addition to its tolerance to 
contour distortions make the proposed method adequate 
for shape retrieval purposes.  
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The most significant drawback of the method is that it can 
handle only closed contours. Cross like shapes, for 
example, constructed by a very thin line do not have a 
closed contour and thus cannot be identified correctly by 
the present method. A possible solution to this problem 
could be a pre-processing of the original shape by a 
dilation operation, which would thicken the lines. That 
would result to the appearance of a perimeter in the 
circular inhibition level, and thus of a closed contour. Also 
the use of 10×10 pixel kernels, prevents features of 
smaller size to be extracted. Although this is an important 
drawback in some cases, it stands also as an advantage in 
others. It particularly prevents contour fluctuations 
introduced by the pixel grid, in cases of rotations or noise. 
These fluctuations are a problem to shape descriptors that 
focus on the pixel level, such as chain codes or shape 
numbers [18-20]. 

The target application of the proposed method is shape 
classification for industrial production systems. In those 
cases, objects on conveyor belts are selected and 
categorized by robots mainly according to their shape. The 
proposed method is appropriate for this application since 
its low computational cost permits real-time execution by 
a personal computer.  Furthermore, the drawbacks that 
have been mentioned do not impose considerable 
problems for the particular application, since objects 
always have a close contour, are located in a non-cluttered 
background and the resolution of the processed image is 
adequate for the use of 10×10 pixel kernels.  

Improvements could include the use of more 
characteristics of the HVS. Layer 3 of the shape descriptor 
could be replaced by a more human-based approach, such 
as silent contour integration by lateral connections in the 
primary visual cortex, extraction of more complicated 
features such as corners and junctions and their invariant 
binding by higher visual areas, using a Hebbian learning 
rule. 
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