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1. Introduction 
Outdoor mobile robots, which have to navigate autonomously in a totally unstructured environment 

need to auto-determine the suitability of the terrain around them for traversal. Traversability estimation 

is a challenging problem, as the traversability is a complex function of both the terrain characteristics, 

such as slopes, vegetation, rocks, etc and the robot mobility characteristics, i.e. locomotion method, 

wheel properties, etc.  

In this paper, we present an approach where a classification of the terrain in the classes “traversable” 

and “obstacle” is performed using only stereo vision as input data. In a first step, high-quality stereo 

disparity maps are calculated by a fast and robust algorithm. This stereo algorithm is explained in 

section 3 of this paper.  

Using this stereo depth information, the terrain classification is performed, based upon the analysis of 

the so-called "v-disparity" image which provides a representation of the geometric content of the scene. 

Using this method, it is possible to detect non-traversable terrain items (obstacles) even in the case of 

partial occlusion and without any explicit extraction of coherent structures or any a priori knowledge of 
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the environment. The sole algorithm parameter is a single factor which takes into account the robot 

mobility characteristics. This terrain traversability estimation algorithm is explained in section 4. 

The stereo disparity mapping and terrain traversability estimation processes are integrated in an 

autonomous robot control architecture, proving that the algorithms allow real-time robot control. The 

results of experiments with this robot navigating on rough outdoor terrain are presented in section 5.  

2. Previous Work 

2.1. Stereo 
Autonomous robots’ behavior greatly depends on the accuracy of their decision making algorithms. In 

the case of stereo vision-based navigation, the accuracy and the refresh rate of the computed depth 

images, i.e. disparity maps, are the cornerstone of its success [19]. In order to address the demand for 

real-time operation, robotic applications usually utilize algorithms of low computational payload. Thus, 

local methods are preferred to the global ones. Dense local methods calculate depth for almost every 

pixel of the scenery, talking into consideration only a small neighborhood of pixels each time [15]. 

Muhlmann et al in [11] describe a method that uses the sum of absolute differences (SAD) correlation 

measure for RGB color images. Applying a left to right consistency check, the uniqueness constraint and 

a median filter, it can achieve 20 fps for 160x120 pixel images. Another fast SAD based algorithm is 

presented in [2]. It is based on the uniqueness constraint and rejects previous matches as soon as better 

ones are detected. It achieves 39.59 fps speed for 320x240 pixel images with 16 disparity levels and the 

root mean square error for the standard Tsukuba pair is 5.77 .The algorithm reported in [23] achieves 

almost real-time performance. It is once more based on SAD but the correlation window size is 

adaptively chosen for each region of the picture. Apart from that, a left to right consistency check and a 

median filter are utilized. The algorithm is able to compute 7 fps for 320x240 pixel images with 32 

disparity levels.  

Another possibility in order to obtain accurate results in real-time is to utilize programmable graphic 

processing units (GPU). In [24] a hierarchical disparity estimation algorithm is presented. This method 

can process either rectified or non-calibrated image pairs using a local SAD based bidirectional process. 

This algorithm is implemented on an ATI Radeon 9700 Pro GPU and can achieve up to 50 fps for 256x256 

pixel input images. 

On the other hand, an interesting but very computationally demanding local method is presented in 

[22]. It uses varying weights for the pixels in a given support window, based on their color similarity and 

geometric proximity. However, the execution speed of the algorithm is far from being real-time. The 

running time for the Tsukuba image pair with a 35x35 pixels support window is about one minute. The 

error ratio is only 1.29%, 0.97%, 0.99%, and 1.13% for the Tsukuba, Sawtooth, Venus and Map image 

sets accordingly.  
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A detailed taxonomy and presentation of dense stereo correspondence algorithms can be found in [15]. 

Additionally, the recent advances in field as well as the aspect of hardware implementable stereo 

algorithms are covered in [13]. 

2.2. Traversability Analysis 
Terrain traversability analysis is a research topic which has been in the focus of the mobile robotics 

community in the past decade, inspired by the development of autonomous planetary rovers and, more 

recently, the DARPA Grand Challenge. However, already in 1994, Langer et al. [10] computed elevation 

statistics of the terrain (height difference and slope) and classified terrain cells as traversable or 

untraversable by comparing these elevation statistics with threshold values. Most of the terrain 

traversability analysis algorithms employ such a cell-based traversability map, which can be thought of 

as a 2.5D occupancy grid. The problem with Langer’s method was that the traversability was only 

expressed in binary forms and soon other researchers [17][5] presented solutions to lift this limitation. 

In [16], Seraji proposed a fuzzy-logic traversability measure, called the Traversability index, which 

represents the degree of ease with which the regional terrain could be navigated. This degree was 

calculated on the basis of the terrain roughness, the slope and the discontinuity, as measured by a 

stereo vision system.  

Schäfer et al. presented in [14] a similar stereo-discontinuities based approach without explicit 

calculation of a traversability map. Other researchers [18][8][6] have embedded the stereo-based 

terrain traversability analysis in an on-line learning approach. The results of these methods depend 

greatly on the quality of the training set.  

In [21], Ulrich and Nourbakhsch presented a solution for appearance-based obstacle detection using a 

single color camera. Their approach makes the assumption that the ground is flat and that the region in 

front of the robot is ground. In [7], Kim et al. present another single-camera traversability estimation 

method based upon self-supervised learning of superpixel regions. 

Besides monocular and stereo vision, laser range finders are a useful sensor for terrain traversability 

estimation. In [1], Andersen et al. present a method for terrain classification using single 2D scans. More 

recently, in [20], the Stanford Racing Team utilized a Traversability Map based on data from six laser 

scanners registered with pose from an unscented Kalman Filter to classify grids as undrivable, drivable, 

or unknown. Unfortunately, pose error often led to a large error in the 3D data. To correct for this a 

Markov model was used to probabilistically test for the presence of an obstacle leading to an improved 

Traversability Map. In addition, parameters of the Markov model where tuned using a discriminative 

learning algorithm and data labeled through human driving. Data representing where the vehicle 

traveled was labeled as drivable while areas to the left and right of the vehicle were labeled as non-

drivable. This significantly reduced the instances of false positives in the map. Finally, a mixture of 

Gaussians from RGB vision data was maintained for the drivable area of the Traversability Map. These 

Gaussians were used by an online learning algorithm to label data beyond the range of the laser map. 

Stanford’s extension of the Traversability map represents perhaps the most sophisticated work in the 

area to date. However, it should be noted that the problem was formulated as a road following problem 

and has not been tested in off-road navigation scenarios. 
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3. Stereo disparity mapping 
Stereo disparity is computed using a three-stage local stereo correspondence algorithm. The algorithm 

utilized is a modified version of the algorithm presented in [12]. It combines low computational 

complexity with sophisticated data processing. Consequently, it is able to produce dense disparity maps 

of good quality in frame rates suitable for robotic applications. The structural elements of this algorithm 

are presented in Figure 1. The main attribute that differentiates this algorithm from the majority of the 

other ones is that the matching cost aggregation step consists of two sophisticated sub-steps rather 

than one simple summation. In addition, the disparity selection process is a non-iterative one and the 

final refinement step is absent. 
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Figure 1: Block diagram of the proposed stereo correspondence algorithm. 

The results refinement step is moved inside the aggregation, rather than being an additional final 

procedure. Instead of refining the results that were chosen through a strict selection process, the 

proposed algorithm performs a refinement procedure to all the available data. Such a procedure 

enhances the quality of the results. Thus, the disparity selection step can remain a simple winner-takes-

all (WTA) choice. The absence of an iteratively updated selection process significantly reduces the 

computational payload of this step. 

The matching cost function utilized is the truncated absolute differences (AD). AD is inherently the 

simplest metric of all, involving only summations and finding absolute values. The AD are truncated if 

they excess the 4% of the maximum intensity value. Truncation suppresses the influence of noise in the 

final result. This is very important for stereo algorithms that are intended to be applied to outdoors 

scenes. Outdoors pairs usually suffer from noise induced by a variety of reasons, e.g. lighting differences 

and reflections. Disparity space image (DSI) is a 3D matrix containing the computed matching costs for 

every pixel and for all its potential disparity values. The DSI values for constant disparity value are 

aggregated inside fix-sized square windows. The dimensions of the chosen aggregation window play an 

important role in the quality of the final result. Generally, small dimensions preserve details but suffer 

from noise. On the contrast, large dimensions may not preserve fine details but significantly suppress 

the noise. This behavior is highly appreciated in outdoors robotics applications where noise is a major 

factor, as already discussed. The aggregation window’s dimensions used in the proposed algorithm are 

11x11 pixels. This choice is a compromise between real-time execution speed and noise cancelation. The 

AD aggregation step of the proposed algorithm is a weighted summation. Each pixel is assigned a weight 

depending on its Euclidean distance from the central pixel. A 2D Gaussian function determines the 

weight’s value for each pixel. The center of the function coincides with the central pixel. The standard 

deviation is equal to the one third of the distance from the central pixel to the nearest window-border. 

The applied weighting function can be calculated once and then be applied to all the aggregation 

windows without any further change. Thus, the computational load of this procedure is kept within 
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reasonable limits. The DSI values after the aggregation are furthered refined by applying 3D cellular 

automata (CA). Two CA transition rules are applied to the DSI. The values of parameters used by them 

were determined after extensive testing to perform best. The first rule attempts to resolve disparity 

ambiguities. It checks for excessive consistency of results along the disparity axis and, if necessary, 

corrects on the perpendicular plane. The second rule is used in order to smoothen the results and at the 

same time to preserve the details on constant-disparity planes. The two rules are applied once. Their 

outcome comprises the enhanced DSI that will be used in order the optimum disparity map to be chosen 

by a simple, non-iterative WTA step. 

4. Terrain Traversability Estimation 
Detecting obstacles from stereo vision images may seem simple, as the stereo vision system can provide 

rich depth information. However, from the depth image, it is not evident to distinguish the traversable 

from the non-traversable terrain, especially in outdoor conditions, where the terrain roughness and the 

robot mobility parameters must be taken into account. Our approach is based on the construction and 

subsequent processing of the v-disparity image [9], which provides a robust representation of the 

geometric content of road scenes. The v-disparity image is constructed by calculating a horizontal 

histogram of the disparity stereo image.  

Consider 2 stereo frames, as shown in Figure 2a and b, and the computed disparity image ID, as shown in 

Figure 2c. Then, the v-disparity image IV can be constructed by accumulating the points with the same 

disparity that occur on a horizontal line in the image. Figure 2d displays the v-disparity image IV for the 

given input images.  

 
Figure 2: Stereo, Disparity and V-Disparity Images 

The classification of the terrain in traversable and non-traversable areas goes out from the assumption 

that the majority of the image pixels are related to traversable terrain of the ground plane. The 

projection of this ground plane in the v-disparity image is a straight line, from the top left to the bottom 
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right of the v-disparity image. Any deviations from this projection of the ground plane are likely 

obstacles or other non-traversable terrain items.  

As such, the processing of the v-disparity image comes down to estimating the equation of the line 

segment in the v-disparity image, corresponding to the ground plane. This is done by performing a 

Hough transform on the v-disparity image and searching for the longest line segment. Then, one must 

choose a single parameter which accounts for the maximum terrain roughness. As this parameter 

depends only on the robot characteristics, it only needs to be set once. This parameter sets the 

maximum offset in v-disparity space to be considered part of the ground plane. Any outliers are 

regarded as obstacles, which enables to compile an obstacle image IO. 

5. Results 

5.1. System architecture 
As mentioned before, the stereo disparity mapping and terrain traversability estimation processes are 

integrated in a behavior-based autonomous robot control architecture [4]. This architecture is roughly 

sketched on Figure 3. As can be noted from Figure 3, the stereo framegrabber and subsequent 

traversability estimation module form the input for a behavior to direct the robot away from obstacles. 

This is of course not the only navigational input. The robot uses other on-board sensing equipment such 

as a differential GPS, an orientation sensor, wheel encoders and visual streams for Visual SLAM, a sonar 

array for obstacle avoidance, a chemical sensor for detection of chemical contaminants, a heat sensor 

for avoiding and mapping hot zones and a vision-based human victim detector [3]. All these sensing and 

processing modalities are combined together in a behavior-based context [4], and a globally optimal 

robot control command is send to the robot. 

 

Figure 3: System Architecture 
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5.2. Stereo results 
The stereo algorithm takes as input two images of the scene, captured by a stereo camera. The outcome 

of the algorithm is a disparity map. A disparity map is usually a grayscale image. The brighter a pixel in 

the disparity map, the more close the corresponding pixel in the reference image. Consequently, an 

obstacle could be identified as a group of pixels, which are generally brighter than their neighborhood. 

The results of the stereo algorithm for various outdoors scenes as well as the corresponding calculated 

disparity maps are presented in Figure 4.  

Black areas, corresponding to regions of the depicted path, occur because the algorithm fails to match 

correctly such poorly textured areas. In the second and third scenes where there are obstacles, the 

stereo algorithm successfully highlights them. It can be seen that the used stereo algorithm significantly 

suppresses the noise, preserving at the same time the crucial details of the scene. 

       

       

       
(a)                                                       (b)                                                       (c) 

Figure 4: (a) Left, (b) Right Images of the Stereo Pair and (c) the Computed Disparity Map. 

5.3. Traversability Analysis results 
Figure 5 presents an example result of the proposed terrain traversability analysis algorithm. The left 

image shows the V-Disparity image after Hough transform. The red line indicates the largest line 

segment, corresponding to the ground plane. The two pink lines indicate the region in v-disparity space 

where pixels are considered part of a traversable region. Terrain corresponding to pixels in v-disparity 

space in between the two pink lines is considered traversable, otherwise it is considered as an obstacle. 
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The result of this operation can be judged from the right image of Figure 5, showing the obstacle image. 

This is a version of the color input image, where false color data corresponding to the disparity is 

superposed for pixels classified as belonging to non-traversable terrain. 

       

Figure 5: Left: Line-based Analysis of the V-Disparity Image and Right: Resulting Obstacle Image 

It may be noted that the lower part of the legs of the person standing in front of the robot were not detected as 

obstacles. This is due to the choice of the threshold parameter for the ground plane, discussed above. After tests in 

multiple environments, we used a threshold parameter of 50, which offers a good compromise between a good 

detection rate and low false positive detection rate. 

6. Conclusions 
In this article, we have presented a stereo vision algorithm and a stereo-based terrain traversability 

estimation algorithm. Combined, these approaches make it possible to robustly classify the terrain of 

outdoors scenes in traversable and non-traversable regions quickly and reliably. Integrated in an 

autonomous robot control architecture, this enables a mobile agent to navigate autonomously in an 

unstructured outdoor environment. 
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