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Abstract—This paper presents a new method for designing
multi-camera arrangements with aim to maximize coverage
with the minimum number of cameras. More specifically, the
presented problem has three different components, namely (a) to
maximize the coverage subject to a given number of cameras (b)
to optimize the camera topology given fixed locations and (c) to
minimize the cost of the arrangement, while the least required
percentage of coverage is provided. In order to solve these
problems, a bee colony algorithm is utilized as an optimization
technique that is able to determine the minimum number of
cameras needed to cover the given space completely while taking
into consideration the minimum possible cost for the proposed
arrangement as well. The algorithm employs several camera
placement constraints referring to geometrical, optical as well
as reconstructive limitations and delivers promising preliminary
results.

I. INTRODUCTION

Visual sensor arrangements are used in many novel ap-
plications such as video surveillance [1], sensing rooms [2],
assisted living or immersive conference rooms [3]. Most of
these applications require the layout of camera sensors to
assure a minimum level of image quality or image resolution.
Moreover, one of the most significant factors that determines
the performance of a multi-camera arrangement is the amount
of visibility of the observed space. Depending on the appli-
cation, the visibility of a predefined space could be partial or
complete. Thus, an important issue in designing visual sensor
arrangements is the appropriate placement of the cameras
such that they achieve the maximum amount of visibility as
possible.
Currently most designers of multi-camera systems face

difficulties concerning the visual sensor placement due to the
lack of optimization techniques. Moreover, as multi-camera
arrays are getting more popular and their cost tends to get
reduced every day, efficient strategies for their topology need
to be developed. In this paper, the main focus is on the topic of
maximizing or achieving coverage with respect to a satisfying
field-of-view, guaranteeing that an object in the space will be
imaged at a minimum resolution.
The problem of multi-camera topology in a 3D monitoring

space is based on the renowned Art Gallery Problem (AGP).
The main goal in the latter is to find the minimum number
of guards that can monitor a fixed number of paintings in a
gallery [4]. The layout of the art gallery is a close polygon and

the covering points (vertices on the polygon) are the guards.
In our case the guards are replaced by cameras and the goal
is to find the minimum number of them that at the same time
provide an optimum space coverage. The original art gallery
theorem states that at most (n/3) guards are required for cov-
ering polygons with n edges [5] and is known to be a NP-hard
problem [6], [7]. Many variations of AGP have been studied
in previous works that address a variety of restrictions for the
guards and a plethora of distinct polygons. More specifically,
González-Baños and Latombe [8] established a 2D polygonal
map where a robot visits polygons containing more expensive
tasks with highest priority, whilst Urrutia [9] introduces new
directions of research based on watchman routes and floodlight
illumination problems in his extensive survey. Efrat and Har-
Peled [10] presented randomized approximation algorithms for
finding the smallest set of visible points of a polygon, while
Ghosh [11] presents an O(n4) time approximation algorithm
for simple polygons yielding solutions within a log n factor
of the optimal. Recently, Bottino and Laurentini [12] proposed
an incremental algorithm for interior and edge covering which
produces results with nearly optimal performance or close
to the lower bound of the polygonal environment and latest
results presented from Couto [13] shown that an exact solution
is possible by discretizing the examined polygon in O(n3)
iterations.
Moreover, as the majority of these formulations result in

NP-hard problems a profusion of optimization approaches
have been studied. Standard Binary Linear Programming [14],
Greedy approaches [15], Greedy heuristics, Dual Sampling
techniques [16] and Monte Carlo simulations [17] are only
some of the methods, researchers have employed to achieve
the optimum solution. In this paper a nature-inspired solution
based on the intelligent behavior of the honey bees during
their foraging process and their waggle dance is used as the
optimization technique to determine the optimal number of
cameras needed to cover sufficiently the examined space.
Two major differences from the problem discussed in the

paper in hand and the AGP are: (1) the described multi-
camera topology problem has the restriction of the field-of-
view of cameras in the sensor model due to resolution and
sensor properties, while AGP considers guards with no such
limitations and (2) multiple cameras with different fields-of-
views at different levels of costs are used in the multi-camera
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topology problem, whilst in AGP all guards are assumed to
have identical specifications.
The remainder of this work is outlined as follows: In Section

II, definitions and the statement of the problem is given, in
Section III the proposed approach is discussed, explaining
the constraints regarding the multi-camera topology in III-A,
the objective function used for optimization in III-B and the
bee colony algorithm used to converge to the optimum final
solution in III-C. The experimental results of the approach are
presented in Section IV, and finally the paper concludes with
several points for discussion in the last section.

II. PROBLEM STATEMENT

In this paper the problem of optimum multi-camera arrange-
ment for a given space and a specific vision task is discussed.
The main focus is on the static, off-line camera topology prob-
lem, where the main goal is to manage the optimal positioning
of a number of visual sensors for a region to be observed,
given a set of task-specific constraints. In the following, the
term V olumetric Space denotes an arbitrary connected 3D
volumetric physical room, which the arrangement of multiple
cameras is designed to cover. Coverage means that every
point of a given space is sensed with a specified minimal
spatial resolution.
Given this V olumetric Space to be covered by multiple

cameras, two broadened problems related to camera placement
are of the highest interest and formulate it as an optimization
problem:

• The MAXCOVER problem, where the maximum cov-
erage of the given V olumetric Space is sought, given
the fixed number of cameras κ of a certain type and
orientation φ.

• The MINCOST problem, where the minimum total cost
of the multi-camera arrangement is looked for, subject to
a target coverage taking into account all other placement
constraints.

In order to solve the aforementioned optimization problems
a number of definitions should be established. Initially, every
examined 3D V olumetric Space is represented as an occu-
pancy grid consisting of P control points, potentially covered
by µ cameras, the respective costs for each one being Kµ.
Therefore, a binary vector containing the covered points cp is
defined as:

cpi =











1 if control point i is covered by
at least one camera µ

0 otherwise
(1)

Every element aij of a binary coefficient matrix A is then
established as:

aij =











1 if the ith grid point is covered by
the µth camera

0 otherwise
(2)

TABLE I
CAMERA TOPOLOGY CONSTRAINTS

Element Constraint

E1 Visibility
E2 Viewing angle
E3 Field of view
E4 Resolution
E5 Viewing distance
E6 Occlusion

The following relation holds, subject to cp′ = Ax:

cpi =

{

1 if cp′i > 0

0 otherwise
(3)

Every possible solution vector λ is assumed as

λj =

{

1 if the possible solution is chosen
0 otherwise

(4)

while the maximum cost of every jth solution is associ-
ated with Kmax. Considering all the above elements, The
MAXCOVER problem can be described by

max
∑

i

cpi, subject to
∑

j

Kjλj ≤ Kmax (5)

Given a required coverage vector cpC,o or a minimum overall
coverage Cmin, the MINCOST problem can be modeled as

min
∑

j

kjλj , s.t. Aλ ≤ cpC ,o or
∑

i

cpi ≥ Cmin (6)

III. PROPOSED APPROACH
A. Topology Constraints
In this work, a common vision sensor is used for the acqui-

sition of the 3-D surface information, whilst the method can
be extended to other types of sensors as well. The parameters
(positional and optical) of these off-the-shelf sensors are as
follows [18]:
1) Three degrees of freedom of the sensor’s position:

(x, y, z);
2) Three degrees of freedom of the sensor’s orientation: the
pan, tilt, and swing angles: (α,β, γ) and

3) optical parameters including: the back principal point to
image plane distance d; the entrance pupil diameter, a
of the lens; and the focal length f of the lens.

Hence, the viewpoint of the sensor can be stated as a vector:

υ = (x, y, z,α,β, γ, d, f, a) (7)

and all viewpoints must be planned in the nine-dimensional
V olumetric Space:

V = {υi|υi ∈ (x, y, z,α,β, γ, d, f, a)}. (8)

Moreover, an acceptable viewpoint must satisfy multiple
sensor placement constraints as those showing in Table I,
including the geometrical (E1, E2), optical (E3, E5) and re-
constructive (E4, E6) ones.



1) Visibility: A covered point is already denoted as cpi and
is defined as a point of the occupancy grid of the examined
space, n is its normal, S as the vision sensor, v is its pose
whilst va as the viewing direction from S to A. A point is
considered visible if the dot product of its normal and sensor’s
viewing direction is negative. That is

E1 : n · vα = ‖n‖ × ‖vα‖cos(180− θ) < 0 (9)

This means that the point is visible if the angle (θ) between
its normal and the view direction is less than 90◦.
2) Viewing Angle: When this angle is close to 90◦ the

resulting image is not reliable and thus a limit should be set
that will be defined as:

E2 : θ = π − cos−1 n · vα

‖n‖ × ‖vα‖
< θmax (10)

3) Field of View: All detectable and covered points are
useful only when are projected within the camera’s field of
view. The locus, which satisfies the field of view constraint is
given by the following equation:

E3 : v · vα − ‖v‖ · ‖vα‖cos(
α

2
) ≥ 0 (11)

where α stands for the field-of-view angle of the camera.
4) Resolution: The image resolution accounts for the size

of the pixels on the camera’s image plane, measured in pixels
per inch. The resolution constraint ensures that the examined
space is sampled with the minimum acceptable pixel size
resolvable by the vision system, expressed as:

E4 : σresol =

(

z

Nf
−

1

N

)

1

cosθ
< σacceptable, (pixels/inch)

(12)
where z is the distance from the lens to an object’s surface,
N is the number of total pixels in an sensors scanning line
and θ the angle between the object’s surface normal and the
optical axis.
5) Viewing distance: A digital image is considered per-

fectly focused at a specific distance, measured along the
optical axis given by D = fd/(d − f). As this distance is
limited due to optical constraints from the lenses, the image
is projected back to the sensor plane through a blur circle
of a given size c. In the meantime, the focus is maintained
sufficiently for a range of depths from D1, the far limit of the
depth of field, to D2, the near limit.

D12 =
afd

a(d− f)± cf
(13)

where a is the entrance pupil diameter, f is the focal length
of the lens and d is the focus distance. If d is adjustable from
dmin to dmax, considering f < dmin < dmax < 2f , the
object can be placed between zmin and zmax

E5 : zmin < z < zmax (14)

where

zmin =
afdmax

a(dmax − f) + cf

zmax =
afdmin

a(dmin − f) + cf

6) Occlusion: Occlusion is one of the most important
elements to consider when a camera placement algorithm is
designed. A target A is completely visible if nothing blocks
its view into the camera frustum. Any geometrical element ej
such as a line, surface or solid object can be considered as an
occlusion. Thus, the respective constraint will form as:

E6 : O =











visible : if

((

LSA ∩

(

n
⋃

j=1

ej

))

= φ

)

occluded : otherwise
(15)

where LSA is the straight line connecting the sensor center
and point A, and φ is an empty set of intersections between
covered points.

B. Objective function
The camera placement problem can be expressed as a

function optimization one taken into account the weighted
sum of the proposed constraints, each of which characterizes
the quality of the solution with respect to each associated
requirement separately. Therefore, the optimization function
is written as:

f = w1(n ·vα) +w2(θ) +w3E3 +w4(σresol) +w5(z) (16)

where wi, i ∈ {1 . . . 5} are predefined importance weights,
applied to the application in hand and hence theMAXCOV ER

and MINCOST problems can be obtained by

max
∑

i

fi, subject to
∑

j

Kjλj ≤ Kmax (17)

min
∑

j

kjλj , then max
∑

i

fi,

s.t. Aλ ≤ cpC ,o or
∑

i

cpi ≥ Cmin (18)

C. Bee Colony Algorithm
1) Bees in nature: Many studies in recent years stated that

a colony of bees is able to travel over very long distances,
sometimes even more than 10km. Another remarkable aspect
of these colonies is their ability to choose multiple directions
simultaneously in order to exploit a large number of possible
food sources [19], [20], [21]. Fields containing quality food
sources are essential for the survival of the colony and it
is a common tactic that flower patches containing ample
amounts of nectar that can be gathered will less effort are
more favorable from the colony’s foragers, whereas patches
with less nectar will receive fewer visits. [22], [23].
The foraging process starts when the colony commend

its scout bees to approach a promising field congested with
flower patches. At first, scout bees pick random routes from
one flower to another without following any specific pattern.
After the selection of the most profitable flower patches the
harvesting seasons begins, while a percentage of the colony’s
population remains as scout bees to continue its exploration
[20]. All visited flower patches are considered a reliable food



Algorithm 1 Bee Colony Algorithm
Input: Problemsize, Beesnum, Sitesnum, EliteSitesnum, PatchSizeinit, EliteBeesnum, OtherBeesnum
Output: Beebest
1: Population ← InitializePopulation(Beessum, P roblemsize)
2: while ¬(StopCondition()) do
3: EvaluatePopulation(Population)
4: Beesbest ← GetBestSolution(Population)
5: NextGeneration ← 0
6: Patchsize ← (PatchSizeinit × PatchDecreasefactor)
7: Sitesbest ← SelectBestSites(Population, Sitesnum)
8: for (Sitei ∈ Sitesbest) do
9: RecruitedBeesnum ← 0
10: if (i < EliteSitesnum) then
11: RecruitedBeesnum ← EliteBeesnum
12: else
13: RecruitedBeesnum ← OtherBeesnum
14: end if
15: Neighborhood ← 0
16: for (j To RecruitedBeesnum) do
17: Neighborhood ← CreateNeighborhoodBee(Sitei, Patchsize)
18: end for
19: NextGeneration ← GetBestSolution(Neighborhood)
20: end for
21: (RemainingBeesnum ← (Beesnum − Sitesnum)
22: for (j To RemainingBeesnum) do
23: NextGeneration ← CreateRandomBee()
24: end for
25: Population ← NextGeneration
26: end while
27: Return (Beebest)

source only when their rate is above a certain quality threshold,
such as the sugar content. Scout bees that return to the hive
with such a successful finding will start to perform a dance
known as the waggle dance [19].
This peculiar behavior is vital for the colony communication

because it contains important information regarding every
flower patch such as: the direction in which the remaining
scout bees should travel in order to locate it, its distance
from the hive and its quality rating according to the quality
standards given by the colony. [19], [23]. The colony will
then use the summary of these three pieces of information in
order to send its bees precisely to the flower patches, without
sacrificing energy following guides or maps. The mysterious
waggle dance is the solely piece of information regarding each
individual’s knowledge of the outside environment. Moreover,
this kind of dance allows the colony to evaluate the relative
quality of different patches according to both the worth of the
food they provide and the amount of energy needed to harvest
it [23].
After waggle dancing on the dance floor, the dancer goes

back to the flower patch followed by its fellow working bees.
More follower bees are sent to more promising patches al-
lowing the colony to gather food more quickly and efficiently.

During the harvesting process from a patch, the working bees
monitor its food level continuously, in order to decide when its
the appropriate time to perform the next waggle dance when
they return to the hive. [23]. If the patch is still resourceful as
a food origin, then it will be announced in the waggle dance
and more bees will be recruited to that source.

2) Proposed Bees Algorithm: As mentioned in [22], the
Bee Colony algorithm is an optimization technique inspired
by the natural behavior of honey bees, particularly designed
to find optimal solution to continuous optimization problems.
Thus, it is an ideal framework for the camera placement
problem and is presented in pseudocode format above. In order
for the algorithm to start, a number of parameters need to
be set, such as: the Problemsize derived from the number
of available κ cameras and the Beesnum standing for the
initial grid points for κ cameras. An initial population is
then created by placing randomly the scout bees into the 3D
space. An initial solution for the objective function (eq.16) is
estimated and the Sitesbest parameter is established as a token
of feasible solution sets defined by the constraints. Advancing
to the next step of the algorithm, bees that have the highest
fitnesses are chosen as EliteBeesnum and sites visited by
them are chosen as EliteSitesnum for neighborhood search.



Then, the algorithm conducts searches in the neighborhood of
the selected sites, assigning more bees to search near to the
EliteSitesnum. The bees can be chosen directly according
to their performance associated with the sites they are vis-
iting. Searches in the neighborhood of the best sites, which
represent more promising solutions, are made more detailed
by recruiting more bees to follow them than the other selected
bees. However, for each visited patch only the bee with the
highest fitness will be selected to form the next bee population.
In nature, there is no such a restriction but in our case this
is applied in order to reduce the number of points to be
explored. Finally, the remaining bees in the population are
assigned randomly around the search space scouting for new
potential solutions. These steps are repeated until the optimal
solution is found, a stopping criterion is met or the number of
permitted iterations has expired. At the end of each iteration,
the colony will have two parts to its new population, which are
the representatives from each selected patch and other scout
bees assigned to conduct random searches.

IV. EXPERIMENTAL RESULTS
Along with the proposed Bee Colony algorithm, two other

optimization approaches are utilized to produce an optimum
solution for both theMAXCOVER and the MINCOST prob-
lems. The Branch and Bound [24] method is able to solve
complex optimization problems such as the ones discussed
in this work by dividing the basic problem in a summary of
simpler sub-problems while covering the needs of the root
problem. This capability of limiting the exploration for the
optimum solution by the progressive evaluation of the sub-
solutions makes it possible to develop or not a branch of the
tree representing the total research. The second optimization
technique used to produce a candidate solution is a genetic
algorithm by formulating an initial population using the topol-
ogy constraints as genetic operators and the objective function
as an initial input. In the following experiments a common test
scenario is set using an arbitrary floor plan in order to measure
the performance of the proposed solutions.

A. MAXCOVER solutions
As mentioned in Section II, in MAXCOVER problems

the maximum coverage is expected, given a fixed number of
cameras of a certain type and orientation. Thus, in Figure 1, the
performance of the proposed algorithm along with the other
two optimization techniques is illustrated. All three methods
were set to use 10 cameras with the same high resolution
lens, attached to a corner of the room or to the midpoint
of a wall. The Bee Colony (Fig. 1(a)) achieved maximum
coverage of 91.2% while the use of Genetic Algorithm (Fig.
1(b)) produced a solution of 89.2% coverage of the room.
Moreover, the Branch & Bound method (Fig. 1(c)) achieved
88.2% of maximum coverage of the floor plan.

B. MINCOST solutions
In this particular MINCOST problem the minimum total

cost of the final solution is the optimum solution, subject to

a target coverage > 95%, taking into account that all points
inside the camera frustum are 100% visible, the Viewing angle
is 45◦, the Field of View and the Resolution of the lens are
60◦ and 150ppi respectively while the Viewing distance is set
at 2m. The cost of each camera with a lens attached is $1300.
The Bee Colony (Fig. 2(a)) achieved the maximum coverage
of 96.84% using 12 cameras while the Genetic Algorithm (Fig.
2(b)) used 11 cameras to cover the 95.88% of the room. Lastly,
the Branch & Bound method (Fig. 2(c)) covered 95.42% of the
room using 11 cameras as well. While our method achieved
the maximum coverage of the room the cost of the final
multi-camera arrangement is more than the other solutions.
Generally, the final decision depends on the application in hand
to obtain the most balanced solution between coverage of the
room and the final cost of the proposed method.

CONCLUSIONS
In this paper, the problem of finding the optimal placement

of multiple cameras placed in 3D space is presented. The main
focus of this research was two broadened problems in the field
of camera placement problems: maximizing coverage of the
3D space, given a fixed number of cameras and minimizing
the total cost of the proposed arrangement, taking into account
several geometrical, optical and reconstructive constraints.
The combination of these limitations, formed the examined
problem as a continuous optimization one and suitable for a
benchmark for the presented optimization technique. The Bee
Colony algorithm is utilized as it is capable to determine the
number of cameras needed to adequately cover the given space
while taking into consideration the minimum possible cost for
the proposed arrangement as well.
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